QLoRA (Quantized Low-Rank Adaptation) has emerged as a game-changing technique for fine-tuning large language models efficiently. In this tutorial, we’ll walk through its implementation and best practices.
QLoRA combines two key techniques:
First, let’s set up our environment with the necessary dependencies:
pip install transformers bitsandbytes peft accelerate
from transformers import AutoModelForCausalLM, AutoTokenizer
import bitsandbytes as bnb
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b",
load_in_4bit=True,
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
)
from peft import LoraConfig, get_peft_model
config = LoraConfig(
r=8,
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.05,
)
model = get_peft_model(model, config)
Our implementation achieves:
QLoRA makes LLM fine-tuning accessible to researchers with limited computational resources while maintaining performance.